

MOI oTOP 2020 Métrologie Optique et Instrumentation

école Technologique du réseau Optique et Photonique

Microscopie magnétique à spin unique

Vincent JACQUES

Laboratoire Charles Coulomb UMR 5221, Université Montpellier, and CNRS

11 mars 2021

Optically active point defects in wide bandgap materials

Optically active point defects in wide bandgap materials

Magnetic field sensing with a single spin

Magnetic field sensing with a single spin

Electron Spin Resonance (ESR)

Magnetic field sensing with a single spin

Can be realized with NV defects in diamond

Maze, Nature (2008), Degen, APL (2008) Balasubramanian, Nature (2008)

Point defects in diamond

Conduction band e< S Ś Valence band

... but more than 500 defects are optically active

→ Color centers

The « Hope » diamond (Washington)

The « Hortensia » diamond (Louvre, Paris)

The Nitrogen-Vacancy (NV) defect in diamond

> An artificial atom "nestled" in the diamond lattice

Detection at the single emitter level <u>at room T</u> (perfect photostability) <u>1</u>μm Single NV

Gruber, Science 276, 2012 (1997)

A robust single photon source

A robust single photon source

Second-order correlation function

$$g^{(2)}(\tau) = \frac{\overline{\mathcal{I}(t)\mathcal{I}(t+\tau)}}{\overline{\mathcal{I}(t)} \times \overline{\mathcal{I}(t+\tau)}} \implies g^{(2)}(0) = \frac{P_c}{P_1 \times P_2}$$

A robust single photon source

Engineering NV defects in diamond

Spin properties

□ Artificial atom with a spin triplet (S=1) ground state

Important properties

> Spin-conserving optical transition $\Delta m_s = 0$.

Important properties

- > Spin-conserving optical transition $\Delta m_s = 0$.
- Spin-dependent ISC to singlet states.

Important properties

- > Spin-conserving optical transition $\Delta m_s = 0$.
- Spin-dependent ISC to singlet states.

Consequences

Important properties

- > Spin-conserving optical transition $\Delta m_s = 0$.
- Spin-dependent ISC to singlet states.

Consequences

Important properties

- > Spin-conserving optical transition $\Delta m_s = 0$.
- Spin-dependent ISC to singlet states.

Consequences

Important properties

- > Spin-conserving optical transition $\Delta m_s = 0$.
- Spin-dependent ISC to singlet states.

Consequences

Important properties

- > Spin-conserving optical transition $\Delta m_s = 0$.
- Spin-dependent ISC to singlet states.

Consequences

- \succ Polarization in m_s=0 by optical pumping.
- Spin-dependent fluorescence signal

Rondin, Rep. Prog. Phys. (2014)

Magnetic sensing with NV defects

Barry et al., Rev. Mod. Phys. 92, 015004 (2020)

Ensemble of NV defects

Number of NVs

Frequency (GHz)

Sensitivity down to few nT.Hz^{-1/2}

Magnetic imaging with an ensemble of NV defects

Magnetic imaging with an ensemble of NV defects

Condensed matter physics

current flow in graphene

Tetienne, Sci. Adv. (2017)

Paleomagnetism

Glenn, Geochem. GeoPhys. (2017)

Biomagnetism

Magnetic field projection (G

Le Sage, Nature (2013)

Spatial resolution limited by diffraction (~ 500 nm)

Magnetic imaging with a single NV defect

Scanning-NV magnetometry

Experimental setup

* Quantitative/vectorial (sensitivity - $1 \mu T/Hz^{-1/2}$)

- ★ No magnetic back-action, operation from 4K to 300K
- ★ Atomic-size detection volume

Rondin, Appl. Phys. Lett. (2012)

Engineering the NV-based sensor

Cuche, Opt. Exp. 17, 19969 (2009)

Photoluminescence raster scan of the AFM tip after grafting

Rondin, Appl. Phys. Lett. (2012)

Single NV at the tip apex !

Imaging the core of a magnetic vortex

AFM image 50-nm thick disk of FeNi

Resolving power ~ 100-150 nm Limited by the probe-to-sample distance d

Improving the resolving power with all-diamond scanning tips

SEM image

Maletinsky, Nat. Nano. (2012) Appel, Rev. Sci. Inst. (2016)

PL map of the diamond tip

Resolving power ~ 30-50 nm

Now even commercially available !

"Iso-B" imaging mode

"Iso-B" imaging mode

"Iso-B" imaging mode

Tetienne, Science (2014)

"Iso-B" imaging mode

Tetienne, Science (2014)

 (\blacksquare)

"Iso-B" imaging mode

Tetienne, Science (2014)

"full-B" imaging mode

Tetienne, Nat. Com. (2015)

"Iso-B" imaging mode

Tetienne, Science (2014)

 \otimes

 (\bullet)

Néel right

"full-B" imaging mode

500 nmSeeman shift (MHz)Geeman shift (MHz)20

Tetienne, Nat. Com. (2015)

Comparison with theoretical predictions

 \otimes

 $oldsymbol{igo}$

Bloch

 \otimes

lacksquare

Néel left

"Iso-B" imaging mode

Tetienne, Science (2014)

 $\rightarrow \bigotimes$

Néel right

(ullet)

"full-B" imaging mode

500 nm States and Stat

Tetienne, Nat. Com. (2015)

Comparison with theoretical predictions

 \otimes

 $oldsymbol{igo}$

Bloch

 \otimes

 (\bullet)

Néel left

Exploring the physics of antiferromagnetic (AF) materials

↓↑↓↑↓↑↓	★ Robust against magnetic perturbations;	
↑↓↑↓↑↓↑	★ Ultrafast dynamics (THz vs GHz for ferromagnets);	
$\downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$	Appealing materials for spintronics	Baltz, Rev. Prog. Phys. (2018)

One challenge \rightarrow imaging the antiferromagnetic order at the nanoscale

Imaging the AF order with scanning-NV magnetometry

Cycloidal AF order in BiFeO₃

AF domain walls in Cr_2O_3

Gross, Nature **549**, 252 (2017) Chauleau, Nat. Materials **19**, 386 (2020) Haykal, Nat. Commun. **11**, 1704 (2020) Appel, Nano Lett. **19**, 1682 (2019) Hedrich, arXiv:2009.08986 Wornle, arXiv:2009.09015

Very promising techniques to investigate the physics of antiferromagnetic materials

A multimode sensor

Collaborations

- > W. Legrand, K. Bouzehouane, V. Garcia, S. Fusil, V. Cros UMPhi Thales
- M. Viret, J.-Y. Chauleau CEA Saclay
- ➢ J. V. Kim, T. Devolder, J.-P. Adam C2N
- N. Jaouen Soleil

erc

ASTER