Enregistrement de signaux terahertz en "monocoup" à l'aide de lasers femtoseconde

Serge Bielawski PhLAM, Université de Lille, France

Métrologie Optique et Instrumentation, école Technologique du réseau Optique et Photonique **MOIoTOP, Mars 2021**

Initial motivations: study of the THz pulses emitted in synchrotron radiation facilities

Accelerator studies: Coherent synchrotron radiation electron bunch shapes, Free-Electron Lasers...

At SOLEIL (below), and also at European XFEL, KARA (Karlsruhe...)

Other applications using "normal" laser-based THz sources?

- ightarrow Applications to very low repetition rate experiments? (e.g., spectroscopy using mJ laser-based THz sources)
- ightarrow Applications to very high repetition rate experiments? (e.g., spectroscopy of fast irreversible processes)

 \rightarrow ...

Observation challenges: (i) bandwidth (ps/sub-ps resolution), (ii) single-shot operation, (iii) optionally >MHz rep.

Introduction	high rep.rate EO sampling	high sensitivity	Principle of Diversity EO sampling (DEOS)	Conclusion
00000	00	00000000	00000	00000
Electro-Opt	ic Sampling of electric t	fields: principle		
Apply	the electric field to be measure	ed on an electro-optic cr	vstal	

- Pockels effect occurs \rightarrow a birefringence is created (or modified) by the field
- Analyze the crystal birefringence using a short laser pulse

Popular since the 80s:

- Near-fiel measurements Valdmanis, Mourou, Gabel, APL 41, 211, (1982)
- Free-propagating THz pulses (time-domain spectroscopy) [Wu and Zhang, APL 67 3523 (1995)]

- Apply the electric field to be measured on an electro-optic crystal
- $\, \bullet \,$ Pockels effect occurs $\, \to \,$ a birefringence is created (or modified) by the field
- Analyze the crystal birefringence using a short laser pulse

Popular since the 80s:

- Near-fiel measurements Valdmanis, Mourou, Gabel, APL 41, 211, (1982)
- Free-propagating THz pulses (time-domain spectroscopy) [Wu and Zhang, APL 67 3523 (1995)]

First demonstration using OSA readout: Jiang and Zhang, Appl. Phys. Lett. 72, 1945 (1998)

Introduction	high rep.rate EO sampling	high sensitivity	Principle of Diversity EO sampling (DEOS)	Conclusion
00000	00	00000000	00000	00000
Outline of the t	alk			

3 parts, corresponding to "3 challenges":

- How to achieve higher repetition-rate EO sampling (when needed)?
- How to achieve "high" sensitivity?
- How to reach the same temporal resolution/THz bandwidth as scanned EO sampling?

Commercial camera (e.g., Goodrich/sensors inc)

Commercial state-of-art ≈ 150 k lines/s (@2048 pix).

- OK for KHz-range THz sources (e.g., based on mJ Ti-Sapphire lasers)
- However: Some applications required higher repetition rates: for instance 1-10-100 MHz... for SOLEIL, Eu-XFEL, or the THz Free-Electron Lasers (e.g., T-ELBE)... 10 GHz for pulsed QCLs...

i.e., develop a new generation of cameras

Speed world record: KALYPSO (KArlsruhe Linear arraY detector for MHz rePetition-rate SpectrOscopy) KalyPSO photodiode array detector THz Electric field TI=several ps EO crystal optics single-shot optical spectrum analyzer Michele Caselle et al, NIMA 936 (2019) 10, Michele Case

Current version (v2) Line rate: 4 Mfps for 512 pixels (2 Mfps for 1024 pixels). Silicon or InGaAs sensor for the moment. On-board FPGA for real-time processing. SNR=60 dB. Next version (v3): 10 Mfps, 80 dB SNR.
Developed at Karlsruhe Institute of Technology (KIT) by the M. Caselle team.

EO sampling using KALYPSO cameras: see in particular PSI: Muller, Peier, Schlott, Steffen, Proc. FEL conference, https://accelconf.web.cern.ch/FEL2010/papers/wepa09.pdf KARA (Karlsruhe) Phys. Rev. Accel. Beams 22, 022801 \rightarrow DESY: Steffen et al., Rev. Sci. Instrum. 91, 045123 (2020)

First demonstration of THz time-stretch EO: [(PhLAM-SOLEIL coll.) Roussel et al. Sci. Rep. 5, 10330, 2015]

Let us start by the result!...

Demonstration: [Roussel et al. Scientific Reports 5, 10330, 2015] High-sensitivity design (this slide) [C.Szwaj et al., Rev. Sci. Instr. 10, 10311 (2016), C. Evain et al., PRL 118, 054801 (2017)]

Let us start by the result!...

Demonstration: [Roussel et al. Scientific Reports 5, 10330, 2015] High-sensitivity design (this slide) [C.Szwaj et al., Rev. Sci. Instr. 10, 10311 (2016), C. Evain et al., PRL 118, 054801 (2017)]

Summary:

• Balanced detection for noise cancellation (laser and ASE)

• Introduction of Brewster plates (with transmission T) increases sensitivity by a factor $1/\sqrt{T}$.

[C.Szwaj et al., Rev. Sci. Instr. 10, 10311 (2016), C. Evain et al., PRL 118, 054801 (2017)]

Introductionhigh rep.rate EO samplinghigh sensitivityPrinciple of Diversity EO sampling (DEOS)Conclusion000000000000000000000000000000This sensitivity enhancement was necessary for investigating the "burst-free" operation mode atSOLEIL

Known as "low-alpha CSR" – the prefered mode for users of coherent THz Measurement sensitivity: ≈ 1.25 V/cm over the first 0-300 GHz band.

Bunch charge $\approx 0.1 \ nC$. Bunch length: 3 ps RMS

C. Evain, E. Roussel, M. Le Parquier, C. Szwaj, M.-A. Tordeux, J.-B. Brubach, L. Manceron, P. Roy, and S. Bielawski, **PRL 118, 054801 (2017)**

q: position, *p*: momentum, E_{wf} : field created by the bunch. Parameters: ϵ small, I_c = beam current (main control parameter).

Introduction	high rep.rate EO sampling	high sensitivity	Principle of Diversity EO sampling (DEOS)	Conclusion
00000	00	00000000	00000	00000

Part 3: The "time resolution bottleneck"

State-of-art of "obvious" limitations (from hardware)

- Femtosecond lasers \rightarrow few tens of fs (commercial Yb fiber lasers).
- Electro-optic crystal usable bandwidth from \approx DC to below the "transverse phonon absorption" (11 THz for GaP).
- Note: possibility to perform measurements above the absorption line.

20 year-old bottleneck: The technique is not directly usable technique unless the bunch is long and/or the analysis window is short: $t_{duration} \gg t_{issue} = \sqrt{t_{window} \times t_{laser}}$.

Example: $t_{window} = 10$ ps and $t_{laser} = 100$ fs $\implies t_{resolution} \approx 1$ ps $\gg t_{laser}$

Resolution/deformation issue: gallery of failures...

H. Murakami, [...] Towards Time-resolved Terahertz **Spectroscopy of Protein in Water** Interchopen, http://dx.doi.org/10.5772/67195

Near field of the relativistic electron bunch at **European XFEL**

We, at PhLAM: Generation of a THz using optical rectification of 800 nm pulses in ZnTe. Scanned TDS trace vs single-shot measurement.

Strategy - step 1: attempt to derive Fourier-domain transfer functions

 $\begin{array}{rcl} \mbox{Input field } E(t) & \rightleftarrows & \tilde{E}(\Omega) \\ \mbox{Measurements } Y_{1,2}(t) & \rightleftarrows & \tilde{Y}_{1,2}(\Omega) \end{array}$

$$H_{1,2}(\Omega) = \frac{\text{measurement}}{\text{input field}} = \frac{Y_{1,2}(\Omega)}{\tilde{E}(\Omega)} \quad \text{with} \quad \begin{array}{l} H_1(\Omega) = h_1 \cos{(B\Omega^2 + \phi_1)} \\ H_2(\Omega) = h_2 \cos{(B\Omega^2 + \phi_2)}, \end{array}$$

 h_1, h_2, ϕ_1, ϕ_2 depend on the crystal and waveplate orientations. $B = \frac{1}{2C}$ and $C = \frac{\partial \omega}{\partial t}$: laser chirp. See calculation details in https://arxiv.org/pdf/2002.03782

Observations:

- The transfer functions present ZEROS at spécific frequencies.
 - \implies impossible to make a "deconvolution" using a single channel: $\tilde{E}(\Omega) = \tilde{Y}_1(\Omega)/H_1(\Omega)$ is ill-posed.
- **(a)** For this "classic" optics adjustement, the zeros of H_1 and H_2 are at the same frequencies \implies can we change this?...

Intuitive picture: we can now retrieve the input field \tilde{E} from the measurements $Y_{1,2}$ using

$$ilde{E}(\Omega) = rac{ ilde{Y}_1(\Omega)}{H_1(\Omega)} \hspace{1cm} ext{or} \hspace{1cm} rac{ ilde{Y}_2(\Omega)}{H_2(\Omega)}$$

depending on frequency

... but we can even refine this algorithm...

Retrieve the input electric field $\tilde{E}_R(\Omega)$ using:

$$ilde{E}_R = rac{H_1 ilde{Y}_1 + H_2 ilde{Y}_2}{|H_1|^2 + |H_2|^2}$$
 (1)

Note: frequency space: $\tilde{Y}_1 = Y_1(\Omega)$, etc. $\tilde{Y}_1(\Omega)$ and $\tilde{Y}_2(\Omega)$: measured EO signals

A bit of history:

Initially introduced for wireless communications using multiple antennas [Kahn Proc. IRE 42, 1704 (1954) + wikipedia page] Photonic context: [Han, Boyraz & Jalali, IEEE Trans. Microwave Theory and Tech. 53, 1404 (2005)]

Introduction	high rep.rate EO sampling	high sensitivity	Principle of Diversity EO sampling (DEOS)
00000	00	00000000	0000

Experimental results using phase diversity Electro-Optic Sampling

Roussel et al. https://arxiv.org/abs/2002.03782,

Studies of electron bunch shapes at the European X-ray Free-Electron Laser using DEOS

In progress: Diversity Electro-Optic Sampling (DEOS) using photonic time-stretch as well as OSA strategies.

(MV/m)

ш

Studies of electron bunch shapes at the European X-ray Free-Electron Laser using DEOS

In progress: Diversity Electro-Optic Sampling (DEOS) using photonic time-stretch as well as OSA strategies.

Introduction	high rep.rate EO sampling	high sensitivity	Principle of Diversity EO sampling (DEOS)	Conclusion
00000	00	00000000	00000	00000
Conclusion				

Single-shot electro-optic sampling

- \bullet Solution 1 for "MHz+" repetition rate EO sampling: chirped EO sampling + KALYPSO camera readout
- Solution 2: EO sampling + photonic time-stretch readout.
- Attention !! Without data processing, time-resolution is terrible when a long recording length is required
- A special "two-output design"+reconstruction algorithm (Diversity EO Sampling) \rightarrow same time-resolution as scanned EO sampling.
- ightarrow details in https://arxiv.org/pdf/2002.03782

Future directions - questions

- Associate knowledges in photonics and electronics \rightarrow for progressing in sensitivity, cost reduction, effective number of points, real-time operation... Some ideas: work at telecom wavelength (1550 nm), design new ADC/FPGA readout systems for time-stretch, new EO optical front-ends for KALYPSO-type cameras...
- Use for studying accelerator-based sources: SOLEIL and KARA/KIT (in the framework of the ULTRASYNC ANR project). Collaborations with Eu-XFEL and FERMI in progress. Feasibility study at T-ELBE.
- Open question: Applications outside the accelerator domain?
- → Spectroscopy requiring high power THz pulses? (i.e., low rep. rate), Monitoring single or non-periodic events? THz laser dynamics? (FELs, Quantum cascade lasers...). Spectroscopy of irreversible processes?...

Introduction	high rep.rate EO sampling	high sensitivity	Principle of Diversity EO sampling (DEOS)	Conclusion
00000	00	00000000	00000	00000
Authors of the works presented here:				

- PhLAM (Lille University, France): Clément Evain, Christelle Hanoun, Marc Le Parquier, Eléonore Roussel, Christophe Szwaj, Serge Bielawski
- Synchrotron SOLEIL (France) Jean-Blaise Brubach, Lodovico Cassinari, Nicolas Hubert, Marie-Emmanuelle Couprie, Marie Labat, Laurent Manceron, Jean-Paul Ricaud, Marie-Agnès Tordeux, Pascale Roy
- **KIT/ANKA Synchrotron radiation facility (Germany)** Edmund Blomley, Erik Bruendermann, Andrii Borysenko, Stefan Funkner, Nicole Hiller, Michael Nasse, Gudrun Niehues, Patrik Schönfeldt, Marcel Schuh, Sophie Walter, Johannes Leonard Steinmann, Anke-Susanne Müller
- KIT/KALYPSO project Michele Caselle team.
- DESY (Germany) Bernd Steffen and Christopher Gerth
- UCLA (USA) Bahram Jalali

Fundings: CPER Wavetech, LABEX CEMPI, CNRS METEOR/MOMENTUM, ANR-DFG ULTRASYNC.

High temporal resolution: Roussel et al. Arxiv: https://arxiv.org/pdf/2002.03782 Time-stretch, first tests: Roussel et al., Sci Rep 5, 10330 (2015). https://doi.org/10.1038/srep10330 High sensitivity: Evain et al. PRL 118, 054801 (2017). https://doi.org/10.1103/PhysRevLett.118.054801 and: Szwaj et al., Rev. of Sci. Instrum. 87, 103111 (2016). https://doi.org/10.1063/1.4964702 Near field + time-stretch: SB et al., Sci. Rep. 9, 10391 (2019). https://doi.org/10.1038/s41598-019-45024-2

Introduction	high rep.rate EO sampling	high sensitivity	Principle of Diversity EO sampling (DEOS)	Conclusion
00000	00	00000000	00000	0000
Deconvolution (using phase diversity (ta	ble-top THz exper	iment)	

Deconvolution

$$Y_{1,2}(\Omega) = H_{1,2}X$$
(2)
$$H_{1,2}(\Omega) = h_0 \cos\left(B\Omega^2 + \phi\right)$$

$$H_{1,2}(\Omega) = h_0 \cos\left(B\Omega^2 - \phi\right)$$

Deconvolution using Maximum Ratio Combining (MRC):

$$X_R = \frac{H_1 Y_1 + H_2 Y_2}{|H_1|^2 + |H_2|^2} \tag{3}$$

[Han, Boyraz & Jalali, IEEE Trans. Microwave Theory and Tech. 53, 1404 (2005)]

Question: How can we find *B* and ϕ ? Minimize the reconstruction error: $\epsilon^2 = |Y_1 - H_1 X_R|^2 - |Y_2 - H_2 X_R|^2$

Green: scanned reference (i.e., the "real signal")

Preliminary tests at the European X-ray Free-Electron Laser

Transfer functions suitable for deconvolution? \rightarrow Search for phase diversity

[Han, Boyraz & Jalali, IEEE Trans. Microwave Theory and Tech. 53, 1404 (2005)]

Objective: interleave the transfer function zeroes

\rightarrow Well-posed deconvolution problem !