

Analyse de surface d'onde pour l'optique adaptative

Webinar MOI - Thème 2 - Session 1

Jean-François SAUVAGE sauvage@onera.fr

retour sur innovation

Aix***Mar**seille

universit

Les aberrations optiques

L'optique adaptative

L'importance de l'analyse de surface d'onde

Analyseurs de surface d'onde
 Dans la pupille
 Shack-Hartmann
 Pyramid
 Dans le plan focal
 Diversité de phase

and Vertering additionant in

Effet d'une aberration optique

Sans aberration :

- Corpusculaire : tous les rayons issus de A convergent exactement en A'.
- Ondulatoire : la surface d'onde sphérique S₀ qui diverge de A se transforme en une surface d'onde sphérique S'₀ qui converge en A'.
- En présence d'aberrations : ce n'est plus le cas

Les aberrations optiques

• On parle (presque) indiféremment :

- D'aberrations optiques
- De phase
- De front d'onde aberrant
- De surface d'onde aberrante
- D'avance / retard de phase

• ...pour parler de la même chose : un écart à la situation parfaite qui crée un défaut dans le plan focal d'imagerie

(Aix*Marseille universite

Polynômes de Zernike vus dans le plan image

Aix***Marseille** université

5

Les effets de la turbulence

Dans l'espace

 $\rightarrow \parallel - \lambda / D$

Résolution limité par les effets de diffraction

Au sol

 λ/r_{o}

Résolution limité par la turbulence

From Mechanical to Optical Turbulence

- Mechanical turbulence (turbulent velocities) mixes air at different **temperature** hence inducing "turbulent" temperature fluctuations
- The air refractive index being a function of temperature it therefore induces **refractive index** fluctuation

C_{N²}: typical vertical distribution

Haute Provence Observatory Sept. 1997

Usual approximation:

Atmosphere is horizontally stratified (thin indepedent layers) and non absorbing

8

Turbulent Phase: Kolmogorov Statistics

Overall phase integrated over the line of sight profile $Cn^2(z)$ $\phi(\mathbf{x})$: 2D Centered Gaussian Stationary Process characterized by its Spatial Power Spectral Density (PSD)

$$r_0 = \left(0, 423 \ k_0^2 \ \int_0^L C_n^2(z) dz\right)^{-\frac{3}{5}}$$

Typical turbulent phase 20 microns PV OPD

ONER

La turbulence : un problème d'aberrations optiques

□ Turbulence : la cause du problème

L'Optique Adaptative (OA)

L'importance de l'analyse de surface d'onde

Analyseurs de surface d'onde
 Dans la pupille
 Shack-Hartmann
 Pyramid
 Dans le plan focal
 Diversité de phase

Adaptive Optics Principle

Adaptive Optics allows to reach diffraction limited angular resolution

Main components: Turbulence ; Def. Mirror ; Wave-Front Sensor ; Rec. & Control

Correction des effets de la turbulence : l'optique adaptative

ONERA

test Verteine additionen une

La mesure de front d'onde : un point central en optique

LABORATOIRE D'AST

AO correction criterion : Strehl Ratio

ix*Marseille université

Correction OA ~20% Strehl

100% Strehl

Turbulence ~1% Strehl

2 decades of AO for astronomy ...

L'OA : un filtre passe haut !

Adaptive Optics: Main Contributors to Residual Phase

Residual Phase after AO Correction

Analyse de front d'onde : schéma générique

Signal à mesurer. Objet ponctuel (étoile, point brillant) ou étendu (galaxie, sol terrestre...)

Codage de l'information : transformation de phase en intensités Shack-Hartman, courbure, pyramide, 3/4 ondes, interféromètres, diversité de phase ...

Detection des photons :

 \Rightarrow rapide (kHz), sensible (faible flux), large bande (R ~1)

Inversion du signal →Model de formation de données →Approximation linéaire (pour temps réel) →Choix d'un base (modale, zonale) => Approximation de F⁻¹

Données finales utilisables dans la boucle d'OA

 $\phi = F^{-1}(I)$

Shack-Hartmann Wave-Front Sensor (WFS)

K sub-apertures $\longrightarrow 2 K$ centers of gravity $\{s_{x/y,i}\} = s$ Principle: measurement of the wave-front local slope:

WFS data are called "slopes"

$$s_{x,i} = \frac{\lambda \, f}{2 \, \pi \, S_i} \int_{S_i} \frac{\partial \phi(x,y)}{\partial x} \mathrm{d}x \, \mathrm{d}y + noise$$

Linear model :

$$\mathbf{s} = D\phi + \mathbf{w}$$

- Shack-H. Slope is achromatic!!
- Slope generally expressed in $\Delta \phi$ phase difference at the edge of sub-ap.

Measurement Noise on Shack-Hartmann Slopes

Case of a Detector limited by Photon Noise

Slope noise variance expressed in phase difference at sup-aperture edge at the WFS wavelength

$$\sigma_{\Delta\varphi}^2 = \frac{\pi^2}{2} \frac{1}{n_{ph}} \left(\frac{\theta}{\lambda/d}\right)^2 (rad^2)$$

- θ : angular size of the sub-aperture spot
 - o λ/d if limited by diffraction
 - o λ/r_0 if limited by seeing
 - o θ_{object} if resolved object

*n*_{ph}: number of photons per <u>sub-aperture</u> & per frame

- In practice : d ~ pitch
- Trade off between :
 - reduction of fitting error => d ↘
 reduction of noise error => d ↗

Depends on the applications (ultimate perf / limit magnitude ...)

THE ERENCH AEROSPACE LA

SPHERE ... du concept à la réalité

Optique adaptative extreme... ...analyse de front d'onde extrême

SPHERE

Spectro-Polarimetric High-contrast Exoplanet REsearch

On sky data (May 2014)

40x40 EMCCD filtered SH WFS

41x41 Piezzo DM

SAXO, le cœur de SPHERE un cœur qui bat 1200 fois par seconde

Experience vs simulation

Pyramid WFS concept

4.On the detectors four pupils are obtained: their illumination reflects the region of the pupil owner of the rays going through one of the four faces.

LOOPS bench, LAM

25

Pyramid WFS

Variable Gain

- Higher Sensitivity (uses whole telescope aperture)
 (D/r₀)² in closed loop
- Higher Dynamic Range From λ/D to Pyramid size
- Easily rebinnable (no extra RON)
- Easy alignment with the CCD
- Modulation???

26

Pyramid WFS

✓ SH WFS: pupil→sp (MLA) & field→quadrants (pixels)
 ✓ PWFS: field →quadrants (pyramid) & pupil→sp (pixels)
 → Identical (geom. optics) but rearrangement of pixels is different

Pyramid wrt SHWFS sensitivity

Formation: Optique Adaptative, PEMOA

07/12/2020

Pyramid vs Sack-Hartmann WFS

□Wavefront measurement error can be much lower

- Shack-Hartmann: size of spot limited to λ / d, where d is size of a <u>sub</u>-aperture and usually d ~ r₀
- Pyramid: size of spot can be as small as λ / D, where D is size of whole telescope. So spot can be D/r₀ = 20 100 times smaller than for Shack-Hartmann
- Measurement error (e.g. centroiding) is proportional to spot size/SNR. Smaller spot = lower error.

□ Avoids bad effects of charge diffusion in CCD detectors

- Fuzzes out edges of pixels. Pyramid doesn't mind as much as S-H.
- Linear response over a larger dynamic range

Naturally filters out high spatial frequency information that you can't correct anyway

07/12/2020

Analyseur à Pyramide...et après ?

- Analyseurs à filtrage de Fourier
 - Projet national WOLF porté par l'ONERA / LAM (Fusco)
- Développement de modèles analytiques récent (Fauvarque, Chambouleyron)
- Développement de moyens expérimentaux (LOOPS, Janin-Potiron)
- Promet une large gamme d'améliorations

Classique...

Nombre de faces...

Angle applati

Modulation...

Diversité de phase

- Déformation de front d'onde => Déformation de l'image
- Or dans l'imagerie, la grandeur d'intérêt : image
- Analyse de front d'onde plan-focal :
 - Et si l'image suffisait à mesurer les aberrations ?
- Modèle de formation d'image ?
 - $\Phi \rightarrow \text{Image}$
 - Cas d'une source ponctuelle : Image = $|TF(Pe^{i\Phi})|^2$
 - Cas d'une source étendue : Image = objet * TF(Pe^{iΦ})|²

Diversité de phase

- 1 seule image suffit presque...mais il subsiste une indétermination
- 2 images sont nécessaires en pratique

RA

THE FRENCH AEROSPACE LAB

Diversité de phase

- Estimation du front d'onde directement dans l'image
 - Au plus près du signal d'intérêt
- Pas de voie optique différentielle
- Modèle de formation d'image non linéaire => Algorithme + complexe, lent (minute)
- Utilisé aujourd'hui principalement pour des aberrations lentement variables.

Analyse de front d'onde : de multiples applications

- Astronomie
 - Etoiles Laser
- Spatial
 - Observation de la Terre
- Microscopie
 - Imagerie du cortex
- Ophtalmologie
 - Imagerie rétinienne
- Domaine TeraHertz
 - Mesure / contrôle de front d'onde

